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Biologist’s Toolbox

PopDyn—an ecological simulation program

odels, whether conceptual,
mathematical, or experi-
mental, have become an

increasingly important area of eco-
logical and evolutionary research.
Models vary in size, nature, and com-
plexity, but typically share a common
goal: to enhance understanding of a
system. Students of ecology and evo-
lution are introduced to models early
in their academic development, but
rarely do they have the opportunity to
explore these models in any detail. In
most cases, dynamic processes are
presented in lecture as static displays
and are not dealt with further. Conse-
quently, many students fail to develop
a sophisticated understanding of these
systems and do not appreciate the ad-
vantages of formulating models.

Much of contemporary ecology
rests on three fundamental models:
some form of density-dependent (e.g.,
logistic) growth, competition, and
predation. The computer program
PopDyn was written to enable in-
structors to present these fundamen-
tal models dynamically and to allow
students to explore how changes in
the parameters affect the dynamic be-
havior of the populations.

PopDyn! is an interactive computer
program written for the Macintosh
that allows users to graphically ex-
plore several classical ecological mod-
els: logistic growth; competition;
predator-prey interactions with lin-
ear, type I, or type Ill functional
response; food chains; and food
webs. The parameters used in each
model are set by adjusting visual met-
aphors on the screen and may be
altered before and during a simula-
tion. The ability to alter parameter-
settings during a simulation allows
one to explore how ecological and/or
evolutionary changes (e.g., improved
capture efficiency of one trophic level
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Figure 1. The logistic window in PopDyn. The icons N, 7, and K can be moved with the
mouse to set the parameters in the logistic equation. The icons for N and K move
vertically along the y-axis, increasing or decreasing the value of the parameter used in
the simulation. The icon for r moves horizontally along the scale bar. The effect of
increasing the parameter r during three separate runs is shown. Sequential simulations
alternate between a solid and dotted trace on a black-and-white monitor and among six

colors on a color monitor.

on another) affect the dynamics of
each population in a community. Pa-
rameters can be deterministic or sto-
chastic with the magnitude and type
of variability (such as normal or uni-
form) set by the user. The results are
plotted in real time as density versus
time and simultaneously in phase
space when appropriate. There is
context-sensitive help in all models,
and particular parameter settings can
be saved to a file and reused. A
manual presents a series of exercises
to lead students through each model
and describes the models and various
options in PopDyn.

The program can be obtained free of charge
from R. J. Etter.

Logistic model

The window for the logistic model is
shown in Figure 1. The parameter
values of the logistic equation

dN_ : N N
a7 K

can be set by moving the appropriate
screen icons (N, r, and K) with the
mouse. Once the parameters are set,
clicking on the start button begins the
simulation. The population trajectory
is plotted during the simulation. Sim-
ulations can be stopped and contin-
ued at any point using the three con-
trol buttons (Start, Continue, and
Stop) located below the plot. There

BioScience Vol. 41 No. 11



4 File Edit

Run Models Model Options View Options

Single stable
equilibdum point

l

T

Oscillates botween
2 fixed points

!

N
Ogscillates between
4 fixed points

Bagining of )

Chaotic regime T
3,
@ r Windows of periodic
orbits in chaotic regime

Figure 2. This plot depicts the cascade of bifurcations in the dynamic behavior of the
logistic equation leading to chaos as a single parameter (r) is changed. The dynamics
change from a single equilibrium point to oscillations with periods of 2, 4, 8, 16, and
on into chaos (aperiodic behavior). On a color monitor, each bifurcation is drawn in a

different color.

are no limits on how long a simula-
tion runs. '

An example of how one might use
this program to explore the effects of
increasing the population-growth rate
on logistic growth is shown in Figure
1. These results were obtained by
running the simulation three times
with increasing values of 7. Note that
on one run (that with the largest r
value) the trajectory overshot K and
exhibited a damped oscillation. If I
had continued increasing r, the dy-
namics of the system would have
moved through a series of bifurca-
tions (periodic orbits) and on into
chaos (aperiodic behavior).

To see a more synoptic view of the
effect of increasing r on the dynamic
behavior of logistic population
growth, one can select the Bifurcation
Map menu item under the models
option menu. Click on the start but-
ton and the values of N that the
system equilibrates to, or oscillates
between, will be plotted as a function
of the value of r (Figure 2). The period
of the orbit is indicated by the num-
ber of points above each value of r.

Any parameter can also be stochas-
tic such that the actual value used
during each time step is drawn from a
random sample with the mean and
variance set by the user. The magni-
tude and type of variance is set from
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within a dialog box (see Figure 9).
Two types of variability for each pa-
rameter can be chosen: uniform
(white noise) or normal. An example
of several runs of the logistic model
with both r and K stochastic is shown
in Figure 3. Notice that the trajecto-
ries do not repeat but instead show

some variance about the mean (the
trajectory if r and K were not stochas-
tic). With this option, one can explore
a variety of questions about how fluc-
tuations in the parameters of the lo-
gistic model affect the dynamic be-
havior of the population.

Competition model

The competition model uses the
Lotka-Volterra equations for compe-
tition between two species with the
competing species represented by the
light-colored (species 1) and dark-
colored (species 2) hare icons. A sam-
ple competition screen is shown in
Figure 4. The left panel is N (popula-
tion density) plotted against time. The
initial population size and carrying
capacity for each population of hares
is set by using the mouse to move
vertically the appropriate icons lo-
cated to the left of the y-axis. The
reproductive rate for each species is
represented by the width of the ar-
rows at the bottom of the left panel
and is set by increasing or decreasing
the width of the arrow.

For example, to change the repro-
ductive rate of the dark-colored hare,
place the cursor over its arrow and
click and hold the mouse button
down while dragging the mouse. The
number above each arrow is the
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Figure 3. Several runs of the logistic model with both 7 and K stochastic. Changing
parameters from deterministic to stochastic can be done easily through dialog boxes

similar to that shown in Figure 9.
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Figure 4 (top). The competition window
in PopDyn. The competition coefficients
(arrows in right panel), reproductive rates
(arrows in left panel), carrying capacities,
and initial densities for the competing
hates can all be modified by moving the
appropriate icon ot adjusting the width of
the appropriate arrow with the mouse
before and during a simulation. The width
of each arrow is adjustable and sets the
magnitude of a parameter. The number
above each arrow indicates its width, al-
lowing users to return to the same para-
meter settings. The results from a simula-
tion that has run for 12.40 time steps are
shown.

Figure 5 (middle). Two runs of the compe-
tition model with identical parameter set-
tings {only one run is shown in the left
anel because the previous run is erased
.gefore each simulation) but with stochastic
competition coefficients. The contrasting
results (which species wins) in phase space
reflects the variance in the competition
coefficients. The values of the competition
coefficients for each time step in the simu-
lation were drawn stochastically from a
normal distribution with a mean set by the
arrows below the phase space and by the
variance set in a separate dialog box.

Figure 6 (bottom). One of the predator-
prey windows in PopDyn using the typical
Lotka-Volterra equations. The window
functions in a manner similar to that
described for the competition window.
The arrows under the phase portrait set
the capture efficiency and mortality rate of
the lynx.

width of the arrow and is a relative
estimate of the parameter (in this case,
the reproductive rate for the dark-
colored hare). The ability to rapidly
change parameter values on screen
without having to type in a series of
numbers allows one to quickly deter-
mine the effects of different parameter
states on population dynamics. All
models use the same metaphor for
setting parameter values.

The right-hand panel is the phase
space of the two species, where the
number of dark hares is plotted
against the humber of light hares. The
thick and thin diagonal lines in the
phase space are the zero-growth iso-
clines for the dark hares (dN,/dt = 0)
and light hares (dN,/dt = 0), respec-
tively, and each line adjusts dynam-
ically as the parameters of the equa-
tions are altered. The arrows below
the right panel set the competition
coefficients. When a simulation is
started, the trajectories of both popu- -
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lations are plotted simultaneously in
N versus time and phase space.

An example is 'shown where the
reproductive rates and competition
coefficients are the same for both spe-
cies, but the initial density of the dark
hare is slightly greater, and its carry-
ing capacity slightly less, than that of
the light hare. In this case, the system
has an equilibrium point where both
species could coexist (where the two
isoclines intersect), but it is an unsta-
ble equilibrium; the dark hare wins
because it has a slight (one individual)
advantage initially.

If the competition coefficients (or
any of the other parameters) are sto-
chastic, the outcome (which species
wins) of a simulation with the same
parameter settings as in Figure 4 is
unpredictable (Figure 5). The species
that wins is determined by which spe-
cies gains an advantage during the
simulation. The phase space in Figure
5 shows the outcome of two simula-
tions with identical parameter settings.

Predator-prey model

The predator-prey model uses the
Lotka-Volterra equations with the

rey (species 1) represented by the
Earc icon and the predator (species 2)
by the lynx icon (Figure 6). The pa-
rameters in the equations are set in a
manner similar to that for the compe-
tition model, and the isoclines in the
phase space adjust dynamically to re-
flect any changes.

A sample run of the simulation is
shown by the trajectories in each
panel. Note that although the iso-
clines are perpendicular to one an-
other, the oscillations are unstable,
leading eventually to the extinction of
both species. These results contrast
with the examples typically presented
in textbooks, where a stable limit-
cycle results from this model. The
explanation for the disparity is that
there is an inherent time lag in all
computer models, which in this case
leads to unstable dynamic behavior.
The time lag is essentially the integra-
tion time step, which can be set
through a menu item (Integration
Time Step) found under the Model
Options menu. By setting the integra-
tion time step to a value less than
0.01, the stable behavior can be ob-
served. ‘

It is unlikely that the predator can
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Figure 7. A predator-prey system with a type Il functional response. Note the shape of
the isoclines in the phase portrait. The successive plots show the change in the dynamic
behavior of the populations as the capture efficiency of the lynx is increased. a. Poor
capture efficiency: there is a damped oscillation to an equilibrium defined by the
intersection of the two isoclines. b. Intermediate capture efficiency: the system reaches
a stable-limit cycle. c. High capture efficiency: the predator drives the prey to extinction
and then also goes extinct.
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Figure 8. The food-chain model window. The controls for the window are described in
the text. a. Sample simulation run for 297 time steps with the parameters set at the
default conditions. Note that all population trajectories are damping. b. Continuation
of the simulation in a, but once the populations had reached a stable equilibrium (first
third of plot), the reproductive rate for the zooplankton was halved. This occurs where
the population trajectories suddenly diverge.

increase its consumption of prey lin-
early with an increase in prey density,
as assumed in the Lotka-Volterra
models. At some point, the predator
should become satiated such that the
number of prey consumed per unit
time remains constant, even though
prey density increases. In addition, it
is unlikely that if there were no pred-
ators the prey would increase without
bound. Both the density dependence
of the prey and the functional re-
sponse of the predator can be incor-
porated into the predator-prey model
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by choosing the type 1l or type HI
functional-response options. A sam-
ple predator-prey screen with a type I
functional response is shown in Fig-
ure 7. The separate panels illustrate
the change in the dynamic behavior of
this interaction when the capture ef-
ficiency of the predator on the prey is
increased.

Food-chain model

The predator-prey models are ex-
tremely simplified representations of

nature; two species would rarely in-
teract in isolation from other orga-
nisms. The next level of complexity is
added to these models in the food-
chain model. The food chain model
extends the simple Lotka-Volterra
predator-prey model to several
trophic levels, which increases the bi-
ological realism but also complicates
intuitive understanding of the system.
The effects of parameter changes or
perturbations in the simple predator-
prey models are fairly easy to predict,
yet how those effects are translated
through a food chain is often not
quite so apparent. In addition, simul-
taneous changes may occur at several
trophic levels, which makes the task
of formulating predictions even more
difficult. The food-chain model al-
lows one to experiment and test intu-
ition on how various perturbations
might affect the dynamic behavior
and equilibrial values of the compo-
nent species in the ecosystem.

An example of the food-chain win-
dow is shown in Figure 8. In this
model, the user controls the complex-
ity (number of trophic levels) of the
ecosystem by turning icons on or off.
Nutrients represent the base of the
ecosystem (trophic level 1) and are
always on. The higher trophic levels
rely on the trophic level immediately
below them for nutrition. The trophic
level icons are located in the upper
right and indicate which species are
included in the simulation. When the
icon is on, it appears black and white
(ot colored on color monitors); when
it is off, it will appear gray. To toggle

“an icon on or off, simply move the

pointer over the icon (a lightning bolt
should appear) and click the mouse
button once.

Below the four icons are smaller
icons with several arrows represent-
ing the interactions within and be-
tween trophic levels. The vertical ar-
rows represent the capture efficiency
or rate of consumption of one trophic
level by another. The arrows pointing
left represent the reproductive rate
(e.g., the number of fish produced per
unit of zooplankton consumed). The
arrows pointing right represent the
density-independent mortality rates.
All rates can be increased or de-
creased as described previously. The
starting density of each population
can be adjusted by moving the density
icons to the left of the y-axis. Densi-
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ties can also be changed during a
simulation by clicking the stop but-
ton, moving the plotting density icons
(the four icons inside tie plot region
in Figure 8a), and clicking the con-
tinue button. This feature enables the
user to model disturbance, emigra-
tion, and/or immigration.

One may also isolate various com-
ponents of the ecosystem and analyze
the effects of parameter variation on
these isolates while all other compo-
nents are held constant. This is ac-
complished by locking resources at
their current levels such that they
never increase or decrease. This op-
tion may be helpful when analyzing
how two higher trophic levels affect
each other independent of lower
trophic levels.

The food-chain model allows one
to explore how ecological and/or ev-
olutionary changes may affect the dy-
namics of a simple ecosystem. For
example, Figure 8a shows the popu-
lation trajectories that occur for the
four trophic levels set at the default
conditions. Notice that the oscilla-
tions are damping. If the simulation is
allowed to run longer, each popula-
tion attains an equilibrium, as shown
in the left third of Figure 8b.

After the system attained an equilib-
rium, I stopped the simulation, halved
the reproductive rate of the zooplank-
ton, and continued the simulation (in
Figure 8b this occurred where the tra-
jectories suddenly diverge). Although
one might have expected that halving
the reproductive rate of the zooplank-
ton would reduce its equilibrium pop-
ulation size, notice that after an initial
decline it attains a population size
similar to that before the parameter
change. However, the reduction of the
zmp%ankton reproductive rate had a
much greater long-term effect on the
fish and nutrients. The fish dropped to
approximately a quarter of their pre-
vious numbers, and the nutrients de-
clined by approximately a third. The
value of this simulation is not the
actual outcome; rather, it demon-
strates the genre of unexpected results
from altering parameters within even a
simple ecosystem.

Another level of complexity and
biological realism can be added by
making some or all of the parameters
stochastic. Figure 9 shows the sort of
dialog box that appears when Sto-
chastic Parameters is selected from
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Figure 9. A dialog box is available in all models. This dialog box allows the user to set
the magnitude and type of variance (normally distributed, white noise, or no variance)
associated with each parameter of a model. To toggle between the different modes of
variability (shown by the icons placed over the arrow representing the parameter), hold
down the option key and click on the icon. The magnitude of the variance is set by
changing the width of the icons with the mouse. The numbers adjacent to the variance
icons indicate the magnitude of the variance as a percentage of the mean. If a parameter
is defined to be variable, the actual parameter value used in each time step is drawn
stochastically from an appropriate distribution with a mean set by the arrows in the
model and a variance set by the width of the variance icons shown above. The example

above is for the food chain model.

the options menu. The dialog box
varies with the model and would ap-
pear initially with all variance icons
as empty boxes, indicating all param-
eters are constant.

Figure 10 shows the population
trajectories of the food-chain model
with a small amount of variance in
the mortality rate of the fish. The
stochastic effect was implemented af-
ter the populations had attained an

“equilibrium. The oscillations appar-

ent in all trophic levels are driven
totally by the small variance in the
mortality rate of the fish.

Food-web model

The food-web model allows simulta-
neous interactions within and be-
tween trophic levels incorporating an-
other level of complexity. In this
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Figure 10. A simulation of the food chain model with parameters set to the default
conditions. After the populations had reached an equilibrium (as shown in Figure 8a),
the mortality rate of the damselfish was set to be stochastic with a variance 16% of the
mean. The oscillations are totally driven by the small variability in the mortality rate of

the damselfish.
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Figure 11. The N-versus-time (left) and phase (right) plots of a food-web model where
a single predator (lynx) is preying on two prey (the liﬁht and dark hares). The prey are

competing and the lynx has a preference for the light

ares. As one changes the capture

efficiency of the lynx on the preferred prey, the dynamics of these three species change
from a stable equilibrium, to a damped oscillation, to a stable-limit cycle, to chaos. The
system shown above is in the chaotic regime. On a color monitor, the attractor of the
phase portrait is spectrally mapped such that the colors indicate the dynamic velocity of
the system. The view of the 3D-phase portrait can be rotated around any of the three
axes to better visualize the shape of the attractor.

model, there is a predator (the lynx)
feeding on two prey (the light and
dark hares) that compete for re-
sources. The model is not completely
implemented yet, but when finished it
will enable users to alter all parame-
ters of the three interacting species.

Figure 11 depicts a sample run of
the food-web model. Both the N-ver-
sus-time plot (left) and the 3D-phase
plot (right) are shown. Note that the
3D-phase portrait can be rotated
around any of the three axes to better
visualize the shape of the attractor. In
this particular simulation, the light
hare is the superior competitor but is
also the preferred prey of the lynx. All
other parameters are equal. As one
increases the capture efficiency of the
lynx on the preferred prey, the dy-
namic behavior of the system changes
from a stable equilibrium, to a
damped oscillation, to a stable limit
cycle, and on to chaos. The simula-
tion shown in Figure 11 is in the
chaotic regime.

If a color monitor is used, the tra-
jectory in phase space changes color
according to the dynamic velocity of
the system (the rate at which popula-
tion size of the three species change:
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2dN; /dt, where i varies over the three
species). The thermal properties of
the colors indicate the dynamic veloc-
ity: red is high velocity, cyan is low
velocity.

Spectrally mapping the dynamics in
this manner provides some fascinat-
ing insights. The dynamic velocity of
the system has important ramifica-
tions for interpreting the outcome of
experiments designed to elucidate pu-
tative interactions among species. For
example, to experimentally test for
competition between the two hares,
one would typically exclude one of
the species from an area. The out-
come of removing one of the hare
species from the system will depend
on what part of the attractor the
system is traversing during the exper-
iment. In the blue region, removing
one of the hares would have little
effect on the dynamics, whereas in the
red regions the effects would be quite
dramatic. Thus, if nature behaves in
this manner (I do not claim that it
does), it is important for ecologists to
know where their system is on the
attractor to properly interpret the
outcome of their experiments.

Also note that the system spends

the majority of time in the blue and
cyan region of the attractor. This con-
dition simply reflects that the popula-
tions are changing slowly in these
regions. If one needed to guess where
on the attractor the system was, the
best guess would be in these regions.
Keep in mind that one loop around
the attractor may take 2500 genera-
tions (i.e., iterations).

Conclusions

PopDyn is useful for dynamic demon-
strations of important points in lec-
ture, but a better use of the program is
to allow students to work with the
models in a laboratory setting. I have
written an exercise manual to com-
plement the PopDyn program that
forces students to think about partic-
ular ecological problems. The simula-
tions, along with the exercises, enable
students to explore how ecological
systems respond to various perturba-
tions and allows them to improve
their ecological intuition. It is the
hands-on experience that allows stu-
dents to develop a better grasp of
ecological concepts. Students can ask
“what if”’ questions and immediately
run a simulation to obtain an answer.

At Harvard University, we rented
computers for a two-week period for
the laboratories that dealt with Pop-
Dyn. We rented enough computers so
that each group of three students had
a Macintosh. Students were asked to
solve a number of problems using
PopDyn and their knowledge of ecol-
ogy and evolution. In addition, Har-
vard has a computer lab filled with
Macintoshs that students could use
independently. The labs were very
successful.

Several universities have used a pro-
totype version of this program. The
responses 1 have received indicate that
students understood the concepts of
competition, predation, and logistic
growth better than any other concepts
covered. In addition, many students
stated that they enjoyed working with
the models. o
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