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The deep ocean supports a highly diverse and mostly endemic fauna, yet little is known about how or where new
species form in this remote ecosystem. How speciation occurs is especially intriguing in the deep sea because few
obvious barriers exist that would disrupt gene flow. Geographic and bathymetric patterns of genetic variation can
provide key insights into how and where new species form. We quantified the population genetic structure of a
protobranch bivalve, Neilonella salicensis, along a depth gradient (2200–3800 m) in the western North Atlantic using
both nuclear (28S and calmodulin intron) and mitochondrial (cytochrome c oxidase subunit I) loci. A sharp genetic
break occurred for each locus between populations above 2800 m and below 3200 m, defining two distinct clades with
no nuclear or mitochondrial haplotypes shared between depth regimes. Bayesian phylogenetic analyses provided
strong support for two clades, separated by depth, within N. salicensis. Although no morphological divergence was
apparent, we suggest that the depth-related population genetic and phylogenetic divergence is indicative of a cryptic
species. The frequent occurrence of various stages of divergence associated with species formation along bathymetric
gradients suggests that depth, and the environmental gradients that attend changes in depth, probably play a
fundamental role in the diversification of marine organisms, especially in deep water. © 2014 The Linnean Society
of London, Biological Journal of the Linnean Society, 2014, ••, ••–••.
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INTRODUCTION

The evolutionary processes that gave rise to the
remarkably diverse fauna inhabiting the deep ocean
are not well understood. Species formation requires
the isolation of gene pools, but few obvious barriers
exist in the deep sea that would impede gene flow and
allow new species to form. In fact, many taxa appear to
have broad bathymetric and geographic distributions,
sometimes spanning entire oceans or even multiple
oceans (e.g. France & Kocher, 1996; Allen & Sanders,
1996a; Herrera, Shank & Sánchez, 2012). Such enor-
mous ranges suggest that populations are well con-
nected via dispersal and that barriers to gene flow are
rare. The high diversity, lack of obvious isolating bar-
riers, and broad-scale distribution of many taxa raise
intriguing questions about how and where new species
form in this vast, remote, and complex ecosystem.

Molecular genetic analyses of deep-water taxa have
begun to document geographic and bathymetric pat-

terns of divergence that implicate several mecha-
nisms potentially limiting gene flow and allowing
populations to diverge. Population divergence has
been associated with distance (France, 1994; Knutsen
et al., 2012), depth (France & Kocher, 1996; Chase
et al., 1998; Etter et al., 2005), topography (Iguchi,
2007; Etter et al., 2011), hydrographic features
(Stepien, Dillon & Patterson, 2000; Roques, Sevigny
& Bernatchez, 2002; Le Goff-Vitry, Pybus & Rogers,
2004), environmental heterogeneity (Etter et al.,
2005), and vicariance (Kojima et al., 2001; Aboim
et al., 2005; Stefani & Knutsen, 2007), and is often
large enough to arguably reflect cryptic species.
Cryptic species are quite common in marine environ-
ments (Knowlton, 1993), but may be more common in
the deep sea where much less is known about the
biology and natural history of the fauna and where
morphology may be highly conserved. The presence
of cryptic species suggests that geographic distribu-
tions may be greatly overestimated and biodiversity
underestimated, which will have important implica-
tions for identifying the ecological forces that shape*Corresponding author. E-mail: amanda.glazier001@umb.edu
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local and regional levels of diversity, understanding
the evolutionary processes that promote diversifica-
tion, and protecting the ecosystem properties essen-
tial for managing and preserving the deep-water
fauna. This final concern is especially important
now because the deep sea is experiencing increasing
stresses from a wide variety of anthropogenic activi-
ties, including fisheries, energy extraction, and
mineral mining (Ramirez-Llodra et al., 2011; Levin &
Sibuet, 2012; Mengerink et al., 2014).

Although many species are thought to have broad
bathymetric ranges, often exceeding 2500 m (e.g.
bivalvia: Cuspidaria atlantica and Poromya tornata
(Olabarria, 2005); echinoidea: Paragonaster subtilis
and Porcellanaster ceruleus (Howell, Billett & Tyler,
2002); and polychaeta: Nephtys sphaerocirrata and
Ophelia profuna (Cosson-Sarradin et al., 1998)), they
are typically defined morphologically. The strong envi-
ronmental changes that occur across such large depth
ranges, however, are likely to engender population
differentiation and possibly lead to the formation of
new species. A number of environmental gradients
attend changes in depth, including pressure, tempera-
ture, oxygen, nutrient flux, topographic complexity,
environmental heterogeneity, and sediment character-
istics (reviewed in Gage & Tyler, 1991). Each of these
gradients, singly or in combination, has been invoked
as a key force in regulating bathymetric distributions
(Carney, 2005), altering ecological processes (Levin
et al., 2001), shaping macroecological patterns
(reviewed in Rex & Etter, 2010), fostering adaptation
(e.g. Somero, 1992; Levin, 2003; Brown & Thatje,
2011), and promoting diversification (Etter et al.,
2005). If these strong environmental gradients
promote diversification, and deep-water taxa are
limited in the range of biotic and abiotic conditions
they can successfully tolerate, then many species that
are defined morphologically and thought to have broad
bathymetric ranges (e.g. > 2500 m) might instead be
composed of complexes of cryptic species that have
adapted to specific depth regimes. Quantifying
bathymetric patterns of genetic variation and identi-
fying cryptic species are critical for providing a better
understanding of the abundance, distribution, and
diversity of the deep-water fauna and the ecological
and evolutionary processes that shape local and
regional patterns of biodiversity.

Here we quantify bathymetric patterns of gene-
tic variation for a common protobranch bivalve,
Neilonella salicensis (Seguenza, 1877), in the western
North Atlantic. This species is abundant throughout
the Atlantic, ranging in depth from 508 m to 3800 m,
but may occur deeper in the West European Basin
(Allen & Sanders, 1996a, b). Protobranchs are the most
basal bivalve group (Kocot et al., 2011; Smith et al.,
2011; Sharma et al., 2012), are infaunal deposit

feeders, and reach their greatest success in the deep
sea (reviewed in Zardus, 2002). Most protobranchs,
including N. salicensis, have a long, complicated taxo-
nomic history of species synonymizations, splitting,
and renaming, primarily based on morphological char-
acters of the shell (e.g. height/length ratios, umbo
position, and presence and shape of hinge teeth) and
internal structures (e.g. size and shape of adductor
muscles, gill plates, and positioning and shape of the
gut) (reviewed in Warén, 1989; Allen & Sanders,
1996b). Although morphology forms the basis for most
species-level identifications, recent genetic analyses of
other deep-sea protobranch bivalves have frequently
identified significant genetic divergence within
putative morphological species, suggestive of cryptic
species (Chase et al., 1998; Etter et al., 1999, 2005;
Zardus et al., 2006; Jennings et al., 2013). In addition,
the first comprehensive molecular phylogenetic analy-
sis of the protobranch bivalves discovered considerable
inconsistencies in the phylogenetic relationships
within and among genera (Sharma et al., 2013), sug-
gesting that even at these higher taxonomic levels,
delineating evolutionary affinities may be challenging
with traditional morphological features. Population
genetic and phylogenetic analyses of N. salicensis
within the North American Basin revealed strong
genetic divergence among populations at different
depths, likely indicative of a cryptic species and sug-
gesting that the environmental gradients which attend
changes in depth play an important role in population
differentiation and speciation in the deep sea.

MATERIAL AND METHODS
SAMPLES

Epibenthic sled samples were collected in 2008 from
1000 to 5200 m depth in the western North Atlantic
along the Gayhead–Bermuda transect from south of
Massachusetts to Bermuda (Fig. 1). Samples were
sorted at 2 °C on board or were stored in chilled 95%
ethanol to be sorted in the laboratory. Protobranch
bivalves sorted on board were either flash-frozen at
−80 °C or placed in 95% ethanol and stored at −20 °C
to maintain the integrity of the DNA. Neilonella indi-
viduals were identified morphologically as N. salicen-
sis or Neilonella whoii (Allen & Sanders, 1996b) based
on characters described in Allen & Sanders (1996b)
and were found in samples from 2200 to 3800 m.

EXTRACTION, PCR AMPLIFICATION AND

SEQUENCE PROCESSING

Genomic DNA was extracted from 50 whole individu-
als using the QiaAMP Mini Tissue kit (Qiagen,
Valencia, CA, USA) and the standard protocol for
tissues, with two elutions of 100 μL. PCR amplifica-
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tion reactions (50 μL) consisting of 1× GoTaq flexi
buffer (Promega, Madison, WI, USA), 1.2 pmol of each
primer, 2 pmol of deoxyribonucleotide triphosphates
(dNTPs), 1.25 mM bovine serum albumin (BSA),
2.5 mM MgCl, 1 U of Gotaq Flexi polymerase
(Promega), and 2 μL of genomic DNA template were
carried out for all loci. The mitochondrial cytochrome
c oxidase subunit I gene (COI), nuclear calmodulin
intron (CAL), and nuclear 28S rRNA gene were
amplified and sequenced. The PCR profiles consisted
of an initial denaturation at 94 °C for 3 min, followed
by 35 cycles of 94 °C for 30 s, 45 s at the annealing
temperature specific for the locus, and 72 °C for the
extension time specific for the locus, with a final hold
at 4 °C. Primers, annealing temperatures, and exten-
sion times are listed in Table 1. Amplification of COI
consisted of two rounds, the preliminary round with
the primers LCO1490 and HCO2198 and the second-
ary round with a nested forward primer, NSCOIF2,
and HCO2198 as a result of poor initial amplification.
Negative controls from the original round were also
included to test for contamination. Twenty individu-
als were sequenced at the 28S rRNA gene, 10 from
each of the two N. salicensis clades. Sequencing of
COI and CAL were attempted for all N. salicensis

individuals, but success varied. Two N. whoii indi-
viduals collected from station 18a at a depth of
3800 m were sequenced for 28S, COI and CAL and
were used as an outgroup. All three loci in two indi-
viduals of the more distantly related protobranch,
Malletia johnsoni Clarke 1961, were sequenced for
use in phylogenetic analyses. These three loci were
selected to span a range of evolutionary rates.

The PCR products were checked for the presence
of single bands by gel electrophoresis and were
outsourced to Agencourt (a Beckman-Coulter company,
Beverly, MA, USA) for bidirectional sequencing. Raw
chromatograms were provided to us. The forward and
reverse sequences were edited and aligned using
Sequencher v 5.0.1 (Gene Corp. Ann Arbor, MI, USA)
and checked by eye to ensure correct base calling.
Individuals heterozygous for CAL were detected with
clear double peaks in the chromatogram. Alleles con-
taining indels were resolved using the online program
Indelligent (Dmitriev & Rakitov, 2008). Heterozygotes
were phased using the Parent-Independent-Mutation
(PIM) model and a threshold of 0.65 in PHASE v 2.1.1
(Stephens, Smith & Donnelly, 2001; Stephens &
Donnelly, 2003). Each direction was resolved sepa-
rately before realigning. Alignments of multiple
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W       77 ° W          76 ° W        75 ° W        74 ° W        73 ° W        72 ° W         71 ° W        70 ° W         69 ° W        68 ° W        67 ° W        66 ° W

42 ° N

41 ° N

40 ° N

39 ° N

38 ° N

37 ° N

Station Depth (m)Latitude (N) Longitude (W)
6a 2200 39.6367 70.5033
7a 2500 39.4500 70.4667
10 2800 39.0371 70.7812
14a 3300 38.2952 70.4940
17a 3500 38.1333 70.3167
18a 3800 38.1050 69.6933

Figure 1. Map of station locations. Geographic location and depth of sampled stations. Bathymetry is coloured to
represent depth. Stations are coloured by the clade identified in phylogenetic analyses: grey corresponds to shallower than
2800 m and white to deeper than 3200 m.
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individuals were created using ClustalX (Larkin
et al., 2007) in BioEdit and were visually checked in
MacClade (Maddison & Maddison, 2005) to ensure
accuracy of alignment.

GENETIC ANALYSES

Arlequin v 3.5 (Excoffier & Lischer, 2010) was used to
calculate basic diversity indices and to test for neu-
trality. The number of haplotypes, gene diversity, and
nucleotide diversity were calculated for each locus.
Neutrality was tested using both Tajima’s D (tested at
P < 0.05) and Fu’s Fs (tested at P < 0.02). Indels in
CAL were excluded from these analyses.

Phylogenetic relationships were inferred using
BEAST v 1.7.4 (Drummond et al., 2012) for each
locus (COI, CAL, and 28S), individually and for all loci
combined. Tracer was used to ensure sufficient burn-in
and run time based on Effective Sample Size (ESS)
estimations of at least 100. The COI tree was inferred
using the SRD06 mutation model. The CAL tree and
the combined three-locus tree were inferred using an
HKY mutation model based on the AIC and BIC
models selected in jMODELTEST (Guindon & Gascuel,
2003; Darriba et al., 2012). A Yule speciation prior was
enforced with all trees, and analyses were carried out
with an uncorrelated lognormal clock and an MCMC
chain of 3 × 107 steps, logging every 1000 trees and a
starting UPGMA tree. Individuals were collapsed into
haplotypes and alleles for the COI and CAL analyses,
respectively. The tree with all three loci contained only
the individuals for which all three loci were success-
fully sequenced. Tree models were linked to create one
combined tree. Two N. whoii individuals were used as
an outgroup in each tree analysis. These analyses were
repeated using M. johnsoni as an outgroup to deter-
mine if topologies were robust.

A haplotype network was inferred for each locus
using statistical parsimony in TCS v 1.21 (Clement,
Posada & Crandall, 2000), treating gaps as a fifth
state. The connection limit was increased until all
haplotypes for each locus were incorporated into a
single network for each of the two N. salicensis clades
defined from our phylogenetic analyses.

SPECIES DELIMITATION

Two species-delimitation methods were used to evalu-
ate the probability that the node between the
two N. salicensis clades was indicative of different
species: a discovery method and a validation method
(Carstens et al., 2013). The heuristic search tool
implemented in Brownie (O’Meara, 2010) was used in
the discovery phase. This method takes ultrametric
gene trees as input to estimate species assignments
and relationships. Three gene trees were used asT
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input, a tree each for 28S, COI, and CAL. These trees
contained only the individuals for which all loci were
sequenced and were estimated using BEAST v 1.7.4
with parameters as described in the preceding
section. The heuristic search was carried out in trip-
licate, with default settings changing only the
minimum number of individuals per species to 2.

The validation approach used was BPP v 2.2
(Rannala & Yang, 2003; Yang & Rannala, 2010). BPP
uses the multispecies coalescent with a guide tree in a
Bayesian framework to estimate the posterior prob-
ability of trees with differing numbers of lineages
(potential species delimitations). The analysis
included all three loci and a guide tree that specified
whether individuals were from the shallow or deep
clades of N. salicensis, or from N. whoii. Only individu-
als sequenced for all three loci were included in the
analysis. To assess convergence, three replicate runs
were conducted with 250 000 steps and a burn-in of
25 000. This ensured ESSs of ≥ 1000 for all param-
eters. The validity of the delimitation between shallow
and deep clades of N. salicensis was further tested by
mixing shallow and deep individuals in the guide tree
and running two variations (different individuals
mixed among clades) three replicate times. To deter-
mine how robust the results were to the selection of
priors, the fine-tune parameter of the species-
delimitation algorithm 1 (2 and 20), and the gamma (α,
β) distribution of theta and tau (mean = 0.0001, 0.025,
and 0.01) were altered. Each parameter variation was
run with both the correctly mapped individuals and
the mixed model.

RESULTS
IDENTIFICATION AND AMPLIFICATION

A 405-base pair (bp) segment of COI and a 583-bp
segment of CAL was successfully amplified from 41
and 29 individuals, respectively, identified as
N. salicensis. A 672-bp segment of 28S was success-
fully amplified for 18 of the 20 N. salicensis individu-
als attempted. Amplification failures showed no clear
pattern based on depth or station. All loci were suc-
cessfully amplified for two N. whoii and two M.
johnsoni individuals to be used as outgroups.
Sequences were deposited in GenBank under acces-
sion numbers KM102340-KM102448.

GENETIC DIVERSITY

Overall gene diversity of COI was high, with diversity
greater than 0.9 at all stations, except for station
17a, where only three individuals were sequenced.
Nucleotide diversity was low, ranging from 0.03 at
station 6a to 0.14 at station 14a. No haplotypes
were shared between stations shallower than 2800 m

and deeper than 3200 m. Gene diversity was similar
between the two depth groups, but nucleotide diver-
sity was greater in the deeper group. (Table 2)

The overall gene diversity of CAL was also high.
The greatest diversity was at station 17a, and the
lowest diversity was at station 7a. Nucleotide diver-
sity was low, ranging from 0.00 at station 7a to 0.02
at station 14a. Again, no haplotypes were shared
between individuals found at shallow (< 2800 m) and
deep (> 3200 m) stations. Both the haplotypic and
nucleotide diversity of CAL was greater in the deeper
group than in the shallower group (Table 2). More
heterozygous individuals were also detected in the
deep group: 12, compared with one in the shallow
group. Five indels were resolved, ranging in length
from 1 to 9 bp.

The ten individuals sequenced for 28S from the
stations above 2800 m shared a single haplotype,
whereas individuals from the stations below 3200 m
had two haplotypes. Diversity indices were greater
for the deeper group, and no haplotypes were shared
between shallow and deep groups. Pooled results are
reported for the shallow and deep groups because of
the small sample size for each station (Table 2).

TESTS OF NEUTRALITY

Tests of neutrality for both COI and CAL were non-
significant at all stations, except at station 18a, for
which Tajima’s D was significant for CAL. When
samples were pooled into shallow and deep groups,
both Tajima’s D and Fu’s Fs for CAL were significant
for the deep group whereas both were nonsignificant
for the shallow group (Table 2).

PHYLOGENETIC ANALYSIS

Bayesian phylogenetic analyses of the COI locus
resulted in two distinct clades, one for N. whoii and
another for N. salicensis, with posterior probabilities
of 1.00 for both branches (Fig. 2). Within the
N. salicensis group, there was a secondary split of two
clades, with branch supports of 1.00 and 0.61, indi-
viduals shallower than 2800 m forming one clade and
those deeper than 3200 m forming another. Within
both clades there were two distinct subgroups sup-
ported by posteriors of 1.00 and 0.61 in the shallow
clade and 0.59 and 1.00 in the deep clade.

Phylogenetic analysis of CAL supported a similar
branching pattern with strong divergence between a
shallow and deep clade within N. salicensis (Fig. 3).
Branches between N. whoii and N. salicensis and
between the two clades within N. salicensis were sup-
ported by posterior probabilities of 1.00 on each
branch. The two clades within the shallow and deep
clades were again well resolved, the shallow clades
supported with a posterior of 1.00 and the deep clades
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supported with a posterior of 0.81. Phylogenetic
analysis of the 12 individuals for which all three loci
were sequenced produced a very similar topology,
with posteriors of 1.00 on each branch between the
outgroup N. whoii and N. salicensis, as well as on the
branches of the shallow and deep clades within
N. salicensis and of 1.00 and 0.54 for clades within
the deep group. The split within the shallow clade
was not well supported (Fig. 4). All phylogenetic
topologies remained unchanged when M. johnsoni or
both M. johnsoni and N. whoii (not shown) were used
as the outgroup. A 28S tree was not reported because
of the lack of polymorphisms within each group.

The 28S rRNA network depicts a clear split, with
12 substitutions separating the shallow and deep
samples and over 100 substitutions separating each
from N. whoii (Fig. 5). Haplotype networks for COI
and CAL are reported for each group individually
because shallow and deep clades were separated by a
large number of substitutions, and phylogenetic divi-
sions were distinct and consistent. Shallow and deep

clades were separated by 58 substitutions for COI and
by 65 substitutions for CAL. The COI network for the
shallow group has a somewhat stellate appearance,
but the deeper group does not. Both groups have a
stellate haplotype network for CAL but the samples
below 3200 m exhibit a more complex network, with
longer branches and more alleles (Fig. 5).

SPECIES DELIMITATION

Four species were resolved using O’Meara’s (2010)
heuristic search. These corresponded to N. whoii, a
shallow N. salicensis clade, and two deep N. salicensis
clades. The two deep N. salicensis clades correspond
to the two well-supported clades on the phylogeny of
all three loci and the two divergent haplotypes at 28S
within individuals deeper than 3200 m (Fig. 6). These
individuals do not consistently group together in the
single-locus phylogenies, and thus the split appears to
be driven by the 28S divergence and might represent
two clades that are in the process of diverging but

Table 2. Diversity indices and tests of neutrality

Locus: length Station Sequenced Haplotypes H π Tajima’s D Fu’s Fs

COI: 405 6a 6 5 0.93 0.03 7.95 1.38
7a 5 4 0.9 0.04 14.62 2.53
10 9 8 0.97 0.04 6.18 −0.24
Shallow group 20 13 0.95 0.04 6.64 0.59

14a 8 6 0.93 0.14 7.63 4.85
17a 3 2 0.67 0.12 3.50E+08 7.08
18a 10 7 0.93 0.08 6.54 4.12
Deep group 21 9 0.9 0.11 6.64 13.2

Total 41 22 0.96 0.15 6.34 8.87

CAL: 583 6a 6 2 0.53 0.0034 2.76 2.9
7a 4 1 0 0 0 NA
10 14 5 0.79 0.007 0.63 1.96
Shallow group 24 6 0.65 0.0053 −0.55 1.32

14a 12 11 0.98 0.02 −0.67 −2.64
17a 6 6 1 0.019 1.77 −0.81
18a 16 10 0.9 0.0095 −1.25 −1.51
Deep group 34 24 0.94 0.015 −1.53 −8.47

Total 58 30 0.92 0.09 3.61 6.35

28S: 672 Shallow group 10 1 0 0 0 NA
Deep group 8 2 0.54 0 4.91 2.91
Total 18 3 0.62 0.02 6.79 13.5

NW 4 1 0 0 NA NA

Genetic diversity indices and tests of neutrality were calculated in Arlequin v 3.5. The total number of individuals
sequenced for COI and 28S, and the total number of alleles sequenced for CAL is reported for each station. Neutrality
indices given in bold were statistically significant. Station names correspond to stations sampled on the Endeavor 2008
cruise in the western North Atlantic; shallow and deep groups correspond to clades delimited by phylogenetic analyses
in which stations above 2800 m and below 3200 m grouped together respectively. Total rows correspond to indices
calculated for all N. salicensis individuals taken together. NW corresponds to Neilonella whoii.
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are not as far down this path as the shallow and deep
clades. These results were consistent over all trials.

BPP analyses using a guide tree with individuals
correctly mapped to shallow and deep clades of
N. salicensis reported tree frequencies of 1.00 for the
11 tree, with posteriors of 1.00 for the node between
shallow and deep, as well as for the node between
N. salicensis and N. whoii. In contrast, all model runs
using a guide tree with individuals mixed between
shallow and deep clades of N. salicensis resulted in
tree frequencies of ≥ 0.9 for the 10 tree, with the node
between the two mixed populations having a posterior
of ≤ 0.1 and the node between N. salicensis and N.
whoii having a posterior of 1.00. The BPP analyses
provide strong support that the multilocus divergence
between the shallow and deep lineages is indicative of
different species.

DISCUSSION
CRYPTIC SPECIES?

Neilonella salicensis (Seguenza, 1877) was originally
described as a single species based on conchology and
internal anatomy (Warén, 1989; Allen & Sanders,
1996b), but molecular genetic analyses suggest that it
is composed of at least two genetically distinct groups
separated bathymetrically that likely represent
cryptic species. The two highly supported clades
shared no haplotypes at nuclear loci (28S and CAL) or
the mitochondrial locus, COI. Although validation of
genetic divergences between putative cryptic species
with morphological analysis has resulted in diagnos-
tic characters in other species (Piggott, Chao &
Beheregaray, 2011; Barata et al., 2012; Takeuchi
et al., 2012), a close examination of individuals from
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the two different depth regimes revealed no clear
morphological differences, suggesting either that they
have not diverged phenotypically or that more
detailed multivariate analyses will be needed.

Identification of cryptic species has become increas-
ingly prevalent in a variety of environments (e.g.
Jackson & Austin, 2012; Marin et al., 2013; Millar &
Byrne, 2013; Rheindt, Cuervo & Brumfield, 2013;
Hammer et al., 2014). The criteria and data required
to identify morphologically cryptic species genetically
remains controversial, however (Sites & Marshall
2003; DeSalle, Egan & Siddell, 2005; de Queiroz,
2007; Whelan, 2011; Carstens et al., 2013; Kvist,
2013), and often vary among taxa and markers. Many
species are inferred solely based on the ‘barcoding’
COI gene (e.g. Hebert et al., 2004; Brix, Riehl &
Leese, 2011; Knox et al., 2012; Pfeiler et al., 2013), yet

considerable debate exists on how best to use COI to
delineate putative species and whether a single locus
is sufficient (DeSalle et al., 2005; DeSalle, 2007;
Waugh, 2007; Birky, 2013). More compelling argu-
ments for delimiting species involve recently devel-
oped computational approaches that utilize statistical
analyses of multilocus data sets to infer species-level
divergences (e.g. O’Meara, 2010; Yang & Rannala,
2010; Ence & Carstens, 2011; Carstens et al., 2013;
Rannala & Yang, 2013). Controversy and discordance
remain with these methods (e.g. Leaché & Rannala,
2011; Carstens et al., 2013; Carstens & Satler, 2013;
Miralles & Vences, 2013; Parmakelis et al., 2013;
Satler, Carstens & Heinrich, 2013), but consistent
results across multiple methods provide well-
supported evidence for independent evolutionary
lineages.
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Our work suggests that three congeners of
Neilonella exist within the western North Atlantic
and that they have partitioned the deep sea
bathymetrically, with little overlap among their depth
ranges. The traditional N. salicensis is found at
bathyal depths and is probably composed of two mor-
phologically cryptic species that have separated into
upper and lower bathyal depth regimes. Even if they
have not yet met species-level status, they are suffi-
ciently divergent to be independent evolutionary lin-
eages. At abyssal depths, N. salicensis is replaced
with N. whoii, which is widely distributed throughout
the Atlantic and is genetically and morphologically
quite distinct. Sporadic records of N. salicensis at
abyssal depths probably reflect misidentifications, a
view shared by Allen & Sanders (1996b). Two other

congeners occur within the deep Atlantic, but these
are quite rare, have not been found in the western
North Atlantic, and are easily distinguished from
N. salicensis based on morphology (Warén, 1989;
Allen & Sanders, 1996a, b; Allen, 2008).

SPECIES FORMATION

Morphologically identical, yet genetically divergent,
populations appear to be common in the deep sea
(Etter et al., 1999; Zardus et al., 2006; Brandão, Sauer
& Schön, 2010; Baird, Miller & Stark, 2011; Knox
et al., 2012), especially across bathymetric gradients,
but the forces that foster population differentiation
and speciation are not well understood. Divergence
has been associated with a wide variety of potential
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mechanisms, including both selective and nonselec-
tive processes (e.g. distance, depth, hydrography,
vicariance, and selection along environmental gradi-
ents). Although we cannot identify specific mecha-
nisms with the present data, we highlight a few that
seem to be the most plausible.

DIVERGENCE AND THE DEEP WESTERN

BOUNDARY CURRENT

The genetic break between upper and lower bathyal
clades occurs where the Deep Western Boundary
Current (DWBC) flows south-west along the slope
(Bower, Lozier & Gary, 2011; Toole et al., 2011), which
might be sufficiently powerful to entrain essentially

passively dispersing larvae and prevent gene flow
between depth regimes. However, both empirical and
simulated trajectories indicated considerable mixing
with a high potential of movement between depth
regimes, especially where the DWBC interacts with
the Gulf Stream (Bower et al., 2011, 2013; Lozier,
Gary & Bower, 2012), suggesting that the present
DWBC is unlikely to impede larval exchange among
upper and lower bathyal populations. Of course, the
nature and the scale of dispersal will be influenced
by the length of time that larvae disperse and
whether they are passive. Little is known about how
protobranch larvae disperse in the deep ocean,
whether they are passive, or even how long they
spend in the water column, although shallow-water
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species tend to have relatively short pelagic phases
(Zardus & Morse, 1998; Zardus, 2002).

DIVERGENCE ALONG ENVIRONMENTAL GRADIENTS

The small scale over which divergence emerges, and
the lack of obvious oceanographic or topographic fea-
tures that could impede gene flow, suggests that selec-
tion may play an important role. The genetic break
occurs at bathyal depths where the slope is relatively
steep and environmental gradients are strong. A
number of biotic and abiotic environmental conditions
change across these depths, including temperature,
pressure, oxygen, nutrient flux, sediment character-
istics, calcite solubility, environmental heterogeneity,
predation, species diversity, and trophic complexity
(reviewed in Gage & Tyler, 1991). Strong environmen-
tal gradients can lead to population differentiation
and speciation, even in the face of considerable gene
flow (Irwin, 2012). Indeed, a growing body of evidence

suggests that ecological forces may be much more
important than previously thought in limiting gene
flow and promoting diversification (reviewed in Nosil,
2012; Koutroumpa et al., 2013), especially in marine
environments where allopatric constraints on gene
flow appear to be limited (Bowen et al., 2013). Eco-
logically driven speciation could occur in the deep sea
if adaption to local selective pressures along the depth
gradient limits larval exchange among depth regimes
as a result of immigrant inviability (sensu Nosil,
Vines & Funk, 2005). Strong evidence for such a
process exists in shallow-water corals (Prada &
Hellberg, 2013) and may be even more likely in the
deep sea where few other mechanisms are likely to
impede gene flow on such small scales.

Several obvious phylogeographic and macroecolo-
gical patterns are consistent with the notion that
speciation in the deep sea is often driven by ecological
changes along bathymetric gradients. Population dif-
ferentiation is much greater for populations separated
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vertically (with depth) than for those separated hori-
zontally (distance along isobaths) (Bucklin, Wilson &
Smith, 1987; France & Kocher, 1996; Zardus et al.,
2006; Raupach et al., 2007; Etter et al., 2011; Miller
et al., 2011). For example, protobranch bivalves sepa-
rated by 3 km in depth were considerably more diver-
gent genetically than were those separated by over
10 000 km at the same depth (Zardus et al., 2006;
Etter et al., 2011). The depth-related divergence is
often sufficiently large to suggest the presence of
cryptic species (France & Kocher, 1996; Chase et al.,
1998; Etter et al., 1999; Held & Wägele, 2005;
Reveillaud et al., 2010; Baird et al., 2011; Schüller,
2011). Further along the divergence spectrum, conge-
ners and sibling species are often separated
bathymetrically (e.g. Allen & Sanders, 1996a; Clague
et al., 2011; White, Fotherby & Hoelzel, 2011; Castelin

et al., 2012; Laakmann, Auel & Kochzius, 2012; Moura
et al., 2012; Quattrini et al., 2013) and depth is the
most frequently cited factor separating sibling species
(Knowlton, 1993). Because species formation is a very
dynamic process that occurs across a variety of
timescales, we should expect a range of divergence
levels reflective of various stages of speciation. The fact
that these stages are commonly found along
bathymetric gradients suggests depth, and the envi-
ronmental gradients that attend changes in depth
probably play a fundamental role in the diversification
of the deep-water fauna.

DIVERGENCE AND PALAEO-OCEANOGRAPHY

It is possible that the DWBC was much stronger in
the past and disrupted gene flow between depth
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regimes long enough for divergence to occur. Molecu-
lar clock estimates of the observed genetic divergence
in COI between shallow and deep clades suggest that
gene flow has been absent for more than 15 Myr
(based on a COI clock of arcid bivalves from Marko,
2002), during which the DWBC varied considerably in
intensity (Boyle & Keigwin, 1982; Keigwin & Pickart,
1999). If divergence in the past was sufficient to
prevent recruitment of larvae from contrasting depth
regimes, then even though the contemporary flows of
the DWBC allow larval exchange between depths,
gene flow would be precluded as a result of migrant
inviability. Interestingly, another protobranch
(Nucula atacellana) exhibits a strong genetic break
among populations from different depths in the same
general vicinity (Chase et al., 1998; Zardus et al.,
2006), but multilocus estimates of divergence suggest
a much more recent split (1 Mya, Jennings et al.,
2013). As global climate shifted historically and
thermohaline circulation waxed and waned, the
DWBC may have periodically disrupted gene flow
among populations at different depths, fostering
repeated rounds of species formation. If true, we
should expect other taxa with distributions that span
the DWBC to exhibit diversification at similar times.
In addition, if the waxing and waning of the DWBC is
acting essentially as a speciation pump by repeatedly
disrupting gene flow, it might also help to explain the
well-known peak in diversity at bathyal depths in the
western North Atlantic (Rex, 1981; Etter & Grassle,
1992).

HISTORICAL ALLOPATRY

Another possible explanation for the phylogeogra-
phic patterns is that the two lineages of N. salicensis
diverged in allopatry and are coming back into
proximity within the western North Atlantic.
Although we cannot rule out divergence elsewhere
within the Atlantic, there are few obvious mecha-
nisms that would impede gene flow, and emerging
phylogeographic patterns from a wide variety of taxa
suggest that geographic divergence is much less likely
than bathymetric divergence (France & Kocher, 1996;
Chase et al., 1998; Etter et al., 1999; Reveillaud et al.,
2010; Baird et al., 2011; Schüller, 2011).

CONCLUSION

Cryptic species appear to be much more prevalent
along bathymetric gradients in the deep sea, which is
consistent with the notion that environmental gradi-
ents that attend changes in depth play a key role in
the diversification of the largely endemic deep-water
fauna. The presence of cryptic species leads to under-
estimates of diversity and overestimates of geo-

graphic distributions, and can confound inferences
about the ecological forces that regulate the structure
and function of these communities. Understanding
the frequency, geography, and taxonomic propensity
of cryptic species will be essential to develop more
effective strategies to manage deep-water ecosystems
and mitigate the effects of increasing anthropogenic
stresses.
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