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We have developed cellular automaton models for two species competing in a patchy
environment. We have modeled three common types of competition:facilitation
(in which the winning species can colonize only after the losing species has arrived)
inhibition (in which either species is able to prevent the other from colonizing) and
tolerance(in which the species most tolerant of reduced resource levels wins). The
state of a patch is defined by the presence or absence of each species. State transi-
tion probabilities are determined by rates of disturbance, competitive exclusion, and
colonization. Colonization is restricted to neighboring patches. In all three models,
disturbance permits regional persistence of species that are excluded by competition
locally. Persistence, and hence diversity, is maximized at intermediate disturbance
frequencies. If disturbance and dispersal rates are sufficiently high, the inferior
competitor need not have a dispersal advantage to persist. Using a new method for
measuring the spatial patterns of nominal data, we show that none of these competi-
tion models generates patchiness at equilibrium. In the inhibition model, however,
transient patchiness decays very slowly. We compare the cellular automaton mod-
els to the corresponding mean-field patch-occupancy models, in which colonization
is not restricted to neighboring patches and depends on spatially averaged species
frequencies. The patch-occupancy model does an excellent job of predicting the
equilibrium frequencies of the species and the conditions required for coexistence,
but not of predicting transient behavior.

c© 1999 Society for Mathematical Biology

1. INTRODUCTION

The spatial distribution of populations can profoundly affect their dynamics.
There is now a large amount of literature on spatial models [e.g., the recent books
by Shigesada and Kawasaki (1997), Hanski and Gilpin (1997), Tilman and Kareiva
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(1997), and Turchin (1998)]. The models fall into two categories:spatially-explicit
models, which describe (and thus, are sensitive to) the actual spatial arrangement of
the populations andspatially-averagedor mean-field models, which depend only
on the average properties of the spatial pattern. Mean-field models have been
extensively studied as ‘metapopulation’ models, which describe the age-, size-,
or occupancy-distributions of spatial patches [e.g., Cohen (1970), Levins (1970),
Caswell (1978), Hastings (1978), Hanski (1983), Caswell and Cohen (1991a, b),
(1993), (1995), Gilpin and Hanski (1991), Nee and May (1992), Czaran and Bartha
(1993), Barradas and Cohen (1994), Barradaset al. (1996)]. These metapopula-
tion models are usually presented without specifying the spatially explicit model to
which they are mean-field approximations.

In this paper, we present a general method for constructing comparable mean-
field and spatially-explicit models for interacting populations. These models are
specified in terms of the spatial and temporal scales of the population interactions [cf.
Levin (1992) for a review of scale in ecology]. Our approach permits the direct study
of the effects of spatial arrangementper se. The mean-field models are nonlinear
Markov chains. The spatially-explicit models are stochastic cellular automata.

We apply this framework to the study of competition and coexistence, building on
mean-field models of competing species studied by Caswell and Cohen (1991a, b,
1995), Barradas and Cohen (1994), and Barradaset al. (1996). A central question
is the extent to which disturbance and dispersal can mediate coexistence among
species that cannot coexist in a single patch. That they can do so has long been
apparent from simulations, and has been proven by Barradas and Cohen (1994) and
Barradaset al. (1996) for some special cases.

We examine three models for competition, corresponding to the facilitation, in-
hibition and tolerance succession models of Connell and Slatyer (1977). The dif-
ferences among these models correspond to observable features of competition and
our results show that the consequences—in a spatially explicit model—can be sig-
nificant. We examine equilibrium abundance, transient dynamics, local species
diversity, and the existence of spatial structure. We identify which properties are
satisfactorily predicted by the mean-field model and which are not.

2. CONSTRUCTING CELLULAR AUTOMATON MODELS

A cellular automaton (CA) is an array (usually a regular lattice) of finite-state,
discrete-time dynamical systems. The dynamics at one site (a ‘cell’ or, in our usage,
‘patch’) depend on the state at that site and the states of sites in some neighborhood
of that site. We will often refer to the entire CA array as a ‘landscape’, although no
restriction to terrestrial ecosystems is intended.

2.1. Patch states.Cellular automaton are discrete-state systems, so the first step in
their construction is defining a discrete state space. One way to do this (Hsu, 1987;
Ermentrout and Edelstein-Keshet, 1993) is to divide a continuous state variable
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(e.g., population density) into intervals and define discrete states in terms of these
intervals. In this paper we carry this approach to its logical conclusion, dividing the
abundance of each species into just two categories:absentandpresent. A system
with N species is thus described in terms of 2N states.

Presence vs absence is a biologically relevant distinction, and the processes (col-
onization, extinction, population growth, and interaction) that determine the transi-
tions between these two states are biologically important. However, it is possible to
construct CA models with more detailed state variables (absent, rare, and abundant,
for example), and to include information in addition to the species densities, for
example reflecting environmental conditions [e.g., Caswell and Etter (1993) and
Caswell and Cohen (1995)].

2.2. Patch state dynamics.The within-patch dynamics are specified in terms of
transition probabilities among the patch states. These probabilities can be expressed
in terms of the characteristic time scales of the underlying processes (Caswell and
Cohen, 1991a, b). We suppose, for example, that species become locally extinct due
to disturbance. If the characteristic time between disturbances isτd, then the proba-
bility of disturbance in a unit of time ispd = 1/τd. We also suppose that an inferior
competitor is excluded by a superior competitor in a characteristic timeτc; the prob-
ability of exclusion in a unit of time ispc = 1/τc. In general, the probability of a
transition can be taken as the inverse of the corresponding characteristic time scale.

The colonization of unoccupied patches requires propagules that originate in
occupied patches. We suppose that there is a characteristic dispersal radius; an
empty patch can be colonized only from occupied patches within this radius. In the
mean-field models, the dispersal radius includes the entire landscape; in our CA
models, it is limited to the eight immediately adjacent patches.

The mean number of propagules arriving in an interval of time depends on the num-
ber of occupied patches within the dispersal radius and the production of propagules
per unit time. Letdi ≥ 0 denote the mean number of propagules produced per oc-
cupied patch per unit time, and letfi ∈ [0,1] be the proportion of patches within
the dispersal radius that are occupied bySi . If propagules are distributed randomly
within the dispersal radius, the number arriving in a empty patch per unit time will
be a Poisson random variable with meandi fi . The colonization probability is the
probability of the arrival of at least one propagule in the next time interval:

Ci = 1− e−di fi . (1)

The transition probabilities form a nonlinear Markov transition matrix, whose
structure depends on the biological details of the process being modeled.

This approach can be generalized to any set of interacting populations. ForN
species, there are 2N patch states. The interactions among theN species define
time scales for each each of the 22N inter-state transitions. The inverses of these
time scales provide transition probabilities among the patch states. If a transition
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does not occur, its characteristic time is infinite and its transition probability is zero.
Transitions that involve colonization are described by equation (1); the result is a
complete set of transition probabilities. In Section 3 we show examples for three
models of interspecific competition; see Caswell and Cohen (1991a, b), Barradas
and Cohen (1994), and Barradaset al. (1996) for additional examples.

2.3. Cellular automata and patch occupancy models.If the system is well
mixed, so that every patch interacts equally with every other patch, then the state
of the landscape is completely specified by the proportion of patches in each patch
state. Because such a landscape can be described by the proportions of patches oc-
cupied by each species combination, we call thesepatch-occupancy (PO) models.
Their dynamics can be written

x(t + 1) = Axx(t), (2)

wherex is a vector of proportions (0≤ xi ≤ 1,
∑

i xi = 1) andAx is a column-
stochastic transition matrix (i.e., 0≤ ai j ≤ 1 and

∑
i ai j = 1 for all j ) whose

entries may depend onx.
A CA model, directly comparable to a PO model, can be constructed by applying

the same transition matrix to a local neighborhood, instead of to the entire landscape.
Both PO and CA models are ‘spatial’, in the sense that they describe landscapes

composed of sets of patches. Several sets of terms have been used to distinguish
these two kinds of models. We will refer to them as ‘implicitly’ and ‘explicitly’ spa-
tial models, because PO models are independent of the explicit spatial arrangement
of the patches. The PO models are also called mean-field approximations to the
corresponding CA model; they assume that each patch experiences the overall land-
scape mean frequency of each species combination. Kareiva (1990) would classify
PO models as ‘island models’ and CA models as ‘stepping-stone’ models. Hiebeler
(1997) calls our PO models ‘infinite-dispersal mean-field approximations”.

3. THREE COMPETITION MODELS

We turn now to models for three types of competition: facilitation, inhibition,
and tolerance. This terminology was introduced by Connell and Slatyer (1977) to
describe ecological succession. Patch-occupancy models for the three types were
developed and analysed by Caswell and Cohen (1991b).

Each model contains two species,S1 and S2. SpeciesS1 is the winner in local
competition; i.e., the ‘late successional’ species. SpeciesS2 is the loser in local com-
petition; i.e., an early successional or fugitive species. A patch is in one of four states,

S2 S1 State
0 0 1
0 1 2
1 0 3
1 1 4

(3)
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where 0 denotes absence and 1 denotes presence.
The three models are:

• Facilitation competition. The winning competitorS1 can colonize a patch
only after the losing competitorS2 has colonized and rendered the environ-
mental conditions suitable. OnceS1 colonizes a patch, it eventually excludes
S2.
• Inhibition competition. Both species can colonize empty patches, but each

species can prevent invasion by the other (a priority effect). The two species
co-occur locally only after colonizing a patch simultaneously; when they do
so,S1 eventually excludesS2.
• Tolerance competition. Both species can colonize empty patches. When the

two species co-occur in a patch, the outcome of competition is determined by
their relative abilities to tolerate reduced resource levels. The winning species
can tolerate lower resource levels than the losing species; hence,S1 can invade
a patch containingS2, and when it does so,S2 is eventually excluded. The
losing competitorS2, however, cannot invade a patch containingS1.

The probability of competitive exclusion within a patch ispc. The probability of
disturbance ispd. Disturbance is assumed to remove all species from a patch, and
is assumed not to affect unoccupied cells. The probability of colonization during a
unit time interval is given by equation (1), where the species frequencies are given
by f1 = x2+ x4 and f2 = x3+ x4.

The transition structures implied by the three competition models are shown in
Fig. 1. The corresponding transition matrices are:

A(F)
x =


1− C2 pd pd pd

0 1− pd 0 pc(1− pd)

C2 0 (1− C1)(1− pd) 0
0 0 C1(1− pd) (1− pc)(1− pd)

 , (4)

A(I )
x =


(1− C1)(1− C2) pd pd pd

C1(1− C2) 1− pd 0 pc(1− pd)

C2(1− C1) 0 1− pd 0
C1C2 0 0 (1− pc)(1− pd)

 , (5)

A(T)
x =


(1− C1)(1− C2) pd pd pd

C1(1− C2) 1− pd 0 pc(1− pd)

C2(1− C1) 0 (1− C1)(1− pd) 0
C1C2 0 C1(1− pd) (1− pc)(1− pd)

 .
(6)

The properties of the PO version of these models have been investigated by
Caswell and Cohen (1991b). In all three models, the persistence of the losing
competitor, and hence local species diversity, is maximized at intermediate distur-
bance frequencies. At low disturbance frequencies, the losing competitorS2 cannot
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Figure 1. Transition graphs for thefacilitation (top), inhibition (middle) and toler-
ance (bottom) models of competition. States as defined by equation (3). Parameters:
pd = probability of disturbance,pc = probability of competitive exclusion,Ci = probability
of colonization by speciesi , as given by equation (1).
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Figure 2. A three-dimensional plot showing the development of a simulation of the facili-
tation model. Time proceeds from left to right; each vertical slice represents the landscape
at one instant in time. Parameter values:pc = pd = 0.1, d1 = d2 = 2. Colors: white =
empty, blue =S1, yellow = S2, red = both.
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Figure 3. A three-dimensional plot of the development of the inhibition model. Parameters
and colors as in Fig. 2.
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Figure 4. A three-dimensional plot of the development of the tolerance model. Parameters
and colors as in Fig. 2.
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Figure 5. Equilibrium frequencies (̂f2) of the losing competitor (S2) in the facilitation
model, as a function of the disturbance ratepd, the competitive exclusion ratepc, and the
dispersal coefficientsd1 andd2. Solid line = PO model, open circles = CA model. Baseline
parameter values:pd = pc = 0.1, d1 = d2 = 2.

find enough empty patches to colonize. At high enough disturbance frequencies,
both species are driven to extinction. At intermediate disturbance frequencies, both
species may co-occur. Beta diversity (landscape heterogeneity) is also maximized
at intermediate disturbance levels.

4. COMPARING CA AND PO MODELS FOR COMPETITION

We want to compare the spatially explicit CA and the spatially averaged PO
versions of the three competition models. We will examine equilibrium frequencies,
transient dynamics, conditions for coexistence, and spatial autocorrelation patterns.

The CA models were simulated on a 256×256 grid with periodic boundary con-
ditions. The neighborhood of a cell was defined as the eight immediately adjacent
cells (the ‘Moore neighborhood’). Patches were updated in parallel; i.e., new patch
states were computed for all patches in the landscape and the entire landscape was
updated simultaneously. The simulations were stochastic. At each step of the sim-
ulation, neighborhood frequencies of both species were computed for each patch.
A new patch state was drawn at random from the distribution given by the column
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Figure 6. Equilibrium frequencies (̂f2) of the losing competitor (S2) in the inhibition model,
as a function of the disturbance ratepd, the competitive exclusion ratepc, and the dispersal
coefficientsd1 andd2. Solid line = PO model, open circles = CA model. Baseline parameter
values: pd = pc = 0.1, d1 = d2 = 2.

of the transition matrix [equations (4)–(6)] corresponding to the current patch state.
The program was written in Pascal and run on Macintosh computers.

Typical results of starting the models in a largely empty landscape with a few
scattered cells containing each of the two species are shown in Figs 2–4. The
facilitation model produces a landscape that is rapidly filled by the losing competitor
S2. Only then does the winning species begin to spread through the landscape,
producing large regions where the two species are intermingled. Eventually, the
entire landscape becomes an apparently random mixture of cells in all four states.

In the inhibition model, both species begin to spread through the largely empty
landscape, producing large monospecific clumps of patches. These clumps persist
for a long time, because the winning speciesS1 can invade territory controlled byS2

only when disturbance opens up a cell along the boundary of two adjacent patches.
Thus, the landscape heterogeneity produced by the initial distribution decays more
slowly than in either of the other two models.

In the tolerance model, the two species begin by spreading across the landscape.
As they collide, the winning speciesS1 invades the cells occupied byS2 and rapidly
produces an apparently homogeneous landscape.
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Figure 7. Equilibrium frequencies (̂f2) of the losing competitor (S2) in the inhibition model,
as a function of the disturbance ratepd, the competitive exclusion ratepc, and the dispersal
coefficientsd1 andd2. Solid line = PO model, open circles = CA model. Baseline parameter
values: pd = pc = 0.1, d1 = d2 = 2.

4.1. Equilibrium frequencies. Since Hutchinson (1951) introduced the concept
of ‘fugitive’ species, attention has focused on the regional persistence of species
that are doomed to local exclusion. In our models,S2 is a fugitive species. It
is eventually eliminated byS1 from any patch where they co-occur. In the PO
models for facilitation and tolerance, this implies certain regional extinction in the
absence of disturbance. Thus, in these models, regional persistence ofS2 depends
on disturbance and re-colonization of empty patches.

The inhibition PO model has two absorbing states in the absence of disturbance (x2

andx3), so eventually only one species will remain in any patch. However, because
neither species can invade a patch occupied by the other, regional persistence ofS2

is possible in the absence of disturbance, as long as the initial conditions include
some patches in statex3. Again, the equilibrium regional abundance ofS2 depends
on disturbance and re-colonization.

There is noa priori guarantee that the CA model will exhibit similar equilibrium
frequencies or conditions for coexistence, because of the spatial variance in local
state frequencies in the CA model. To compare the two types of models, we
calculated equilibrium frequencieŝf2 of the fugitive speciesS2 as a function of
disturbance frequency, competitive exclusion rate, and the dispersal coefficients of
the two species.
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Figure 8. Transient dynamics for the PO (upper) and CA (lower) versions of the facilitation
model. Parameter values:pd = pc = 0.01,d1 = d2 = 2.

Equilibria for the PO model were found numerically by solving forx̂ satisfying

x̂ = A x̂x̂. (7)

Equilibria for the CA models were obtained from simulations. To decide when
a simulation had reached equilibrium, we calculated a 100-point running average
of the state frequencies. We calculated a linear regression of these running means
against time for the most recent 400 iterations. When the sum of the absolute values
of the slopes was less than 1.5×10−5 (i.e., the average frequency changes, over 400
time steps, were less than a single patch), we concluded that there was no consistent
change in frequencies. The simulation was continued for 100 iterations and the equi-
librium state frequencies calculated as the mean of the frequencies over the last 100
interactions. All equilibrium calculations began with initial conditions consisting
of equal frequencies of the four states randomly distributed across the landscape.

Figures 5–7 show the equilibrium frequencies ofS2 under the three models, as
functions of pd, pc, d1 andd2. In each case, the parameters are varied around a
baseline set of valuespd = pc = 0.1 andd1 = d2 = 2. Similar patterns were found
for other parameter values.
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Figure 9. Transient dynamics for the PO (upper) and CA (lower) versions of the inhibition
model. Parameter values:pd = pc = 0.01,d1 = d2 = 3.

In all three models, the frequencŷf2 of the losing competitor is maximized at in-
termediate disturbance frequencies, and declines as competitive exclusion becomes
more rapid. It also declines as the dispersal abilities of the winning speciesS1

improve, and increases with increases ind2.
The facilitation model differs from the inhibition and tolerance models, because in

this modelS1 actually depends onS2 for the ability to colonize new patches. Thus,
S2 can withstand lower disturbance rates and higher rates of competitive exclusion
and dispersal of the winning species than in the other two models.

The results of the CA and PO models are qualitatively similar. The agreement is
particularly close in the facilitation model. In the inhibition and tolerance models,
f̂2 is generally lower in the CA than in the PO models. This translates into more
stringent thresholds for persistence ofS2 (i.e., necessary conditions for̂f2 > 0).
This pattern is investigated in more detail below. However, the explicit spatial ar-
rangement of patches clearly has no qualitative effect on the equilibrium frequency
of the losing competitor in any of these models.

4.2. Approach to equilibrium. Because of the finite speed of colonization in an
explicitly spatial model, transient dynamics persist longer in the CA than in the
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Figure 10. Transient dynamics for the PO (upper) and CA (lower) versions of the tolerance
model. Parameter values:pd = pc = 0.01,d1 = d2 = 2.

PO models (Figs 8–10). Initial frequencies for both species were set at 0.001,
randomly and independently distributed over the landscape (so that the initial fre-
quency of patches with both species was about 1.0× 10−6). Results are shown
for pd = pc = 0.01 andd1 = d2 = 2 (except for the inhibition model, where
d1 = d2 = 3). These values were chosen to assure thatS2 would persist in both the
PO and CA models (see Section 4.3). We found similar results for other parameter
values.

In both the CA and PO models, the approach to equilibrium is smooth and
nonoscillatory; it is much slower in the CA model than in the PO model. In the PO
model, each patch type experiences the overall frequency of each of the other patch
types. In the CA model, a patch experiences only its neighbors frequency. Thus,
it takes longer for, e.g., a patch occupied byS1 in the facilitation model tofindand
invade one of the relatively rare patches occupied byS2. The result is the longer
persistence of transient conditions.

4.3. Persistence and coexistence.In spite of their ease of construction and
simulation, analytical stability results for these PO models are difficult to come by.
We know that thesingle-speciesversions admit at most a single nonzero equilibrium
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Figure 11. Critical dispersal coefficients for persistence in the PO and CA models, for
systems with slow (pd = pc = 0.01; left column) and fast (pd = pc = 0.1; right column)
rates of dispersal and disturbance. In each graph, the asymptotically horizontal solid lines
plot the critical valued2 = 82(d1) for persistence ofS2 in the PO model. The open circles
show the results for the CA model. The asymptotically vertical solid lines plot the critical
valued1 = 81(d2) for persistence ofS1 in the PO model. The filled circles show the results
for the CA model.
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frequency, which is globally stable (from all nonzero initial conditions) if it exists.
For a slight generalization of the tolerance model, Barradas and Cohen (1994)
and Barradaset al. (1996) have proven that in the two-species model possesses at
most a single unique interior fixed point, and that this fixed point is globally stable
(from all initial conditions with both species present) when it exists. Based on
extensive numerical investigations, we believe (though we cannot prove) that the
the facilitation, inhibition and tolerance models under investigation here have the
same global stability properties.

Stability conditions for the PO models can be conveniently displayed in terms
of the dispersal coefficientsdi . Consider the losing species,S2. For a given set of
parameters (disturbance rate, exclusion rate, and dispersal of the winning species)
there is a critical value ofd2 below whichS2 is unable to persist. Similarly, for given
values of the other parameters, there is a critical value of the dispersal coefficientd1

below whichS1 is unable to persist. Plotting these critical values ind1–d2 parameter
space permits us to identify combinations that permit persistence ofS1, S2, both,
and neither.

For the PO models, the stability of the equilibrium can be determined by examining
the invasibility of boundary equilibria†. We look for conditions under which each
species is able to invade a landscape on which the other species has reached its
equilibrium.

Invasibility depends on the values of the dispersal coefficientsdi . For fixed values
of pd and pc, there exist two curves:

d2 =82(d1), (8)

d1 =81(d2). (9)

SpeciesSi can invade an equilibrium of the other species if and only ifdi > 8i . That
is, the functions8i define the critical dispersal coefficients required for invasion.
The intersection of the critical dispersal functions8i divides thed1–d2 parameter
space into four regions, corresponding to extinction of both species, persistence of
one or the other species alone, and coexistence of both species.

To find82 for the PO model, we specifyd1, pd, andpc, and solve numerically for
the equilibrium frequency statêx = [ x̂1 x̂2 0 0 ]T. We calculate the Jacobian
matrix for the model in the neighborhood ofx̂. The submatrix describingx3 andx4

(the states involving the invading species) near this equilibrium is independent of the
rest of the matrix, but depends ond2 (and, of course, on the other parameters). We
then solve numerically for the value ofd2 at which the dominant eigenvalue of this

†We are not certain that invasibility guarantees coexistence in these models. Such proofs are non-
trivial (Hutson and Schmitt, 1992), and are not available for the models we are studying here. We
know that invasibility implies coexistence in the models of Barradas and Cohen (1994) and Barradas
et al. (1996), which are similar to the ones we examine here. Our numerical results also suggest that
invasibility and coexistence go hand-in-hand.
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submatrix equals 1; this value is the critical value ofd2 that makes the boundary equi-
librium unstable and permits invasion ofS2. Repeating the process for a range of val-
ues ofd1 gives the function82(d1). Calculation of81 proceeds in a similar fashion.

No such simple analytic criterion is available for the CA models. Instead, we used
repeated simulations to estimate the critical dispersal coefficient as the minimum
value ofdi for which f̂i > 0. While it is possible in CA models for the equilib-
rium to depend on the initial configuration of patch states, we have never found
such dependence in our simulations, and for this analysis we used initial condi-
tions in which the two species were distributed independently with equal expected
frequencies (0.5).

4.3.1. Dispersal and coexistence.The results are shown in Fig. 11. For each
model, we examined a system with slow competition and low disturbance rates
(pc = pd = 0.01) and one with rapid competition and high disturbance rates
(pc = pc = 0.1). In both systems, an average of one disturbance occurs during the
average time required for competitive exclusion.

In the facilitation model, coexistence is easy in both the PO and CA models.
The winning speciesS1 cannot driveS2 to extinction, because asS2 declines, sites
available for colonization byS1 become rarer and rarer. Thus, in both fast and
slow communities, critical dispersal coefficients are determined by the necessity of
dispersing fast enough to counteract losses due to disturbance.

In the inhibition model, the critical dispersal coefficients are higher than in the
facilitation model. The critical values for the CA model are similar to those for the
PO model. In slow communities, persistence is slightly easier in the CA than in
the PO model. In faster communities, the persistence ofS1 is the same in the PO
and CA models, but persistence ofS2 is slightly more difficult (requiring a slightly
higher value ofd2). However, the differences are not dramatic.

Finally, in the tolerance model, there is good agreement between the PO and CA
models (Fig. 11). Again, in the communities with slow competition, it is slightly
easier forS2 to persist in the CA model than in the PO model; the reverse is true
in the communities with fast competition. The criteria for persistence ofS1 are the
same for the PO and CA models.

We conjecture that these differences in persistence reflect, at least in part, the bal-
ance between disturbance, colonization, and competitive exclusion. Empty patches
are harder to find in the CA model than in the PO model. The more quickly com-
petition operates, the more critical the ability to find empty patches becomes. This
does not, however, explain why the critical dispersal rates forS2 are actually lower
in the tolerance CA model when competition is slow.

4.4. Spatial pattern. Patch-occupancy models include exactly two spatial scales:
the individual patch and the entire landscape. This is, of course, a major improve-
ment over models which make no distinctions between different scales, and PO
models have been studied as spatial models for precisely this reason. CA models,
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Figure 12. Spatial association for the facilitation model after 20, 60, and 200 iterations.
The left figure shows the landscape, with colors corresponding to patch states (white = 1,
light grey = 2, dark grey = 3, black = 4). The right figure shows the spatial association
indexτ as a function of distance, for a random sample of 1000 pairs of cells. The horizontal
dotted line is the critical value ofτ that is just significantly different from zero at the 0.05
level. Parameter values:pd = pc = 0.01,d1 = d2 = 4.

in contrast, can include and generate spatial pattern on any scale between the single
patch and the whole landscape.

Spatial autocorrelation is one way to quantify the scale of spatial pattern. It uses a
correlation coefficient to measure the strength of the relationship between values at
randomly selected pairs of points separated by a given distance. Ordinary correla-
tion methods, however, are not applicable to our CA models, because they produce
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Figure 13. Spatial association for the inhibition model after 20 and 500 iterations, and at
equilibrium (several thousand iterations). The left figure shows the landscape (coded as in
Fig. 12); the right figure shows the spatial association indexτ as a function of distance, for a
random sample of 1000 pairs of cells. The horizontal dotted line is the critical value ofτ that
is just significantly different from zero at the 0.05 level. Parameter values:pd = pc = 0.01,
d1 = d2 = 4.

nominal rather than interval or ordinal output. Relationships among nominal vari-
ables can be quantified by association coefficients calculated from a contingency
table [e.g., Liebetrau (1983)]. Therefore, we developed a spatial version of the
Goodman–Kruskalτ (Goodman and Kruskal, 1954) association coefficient. For
each distanceδ, we randomly sampled 2000 pairs of points separated byδ. From
these points we constructed a 4×4 contingency table relating the states of the pairs
of patches. Letni j denote the frequency in the(i, j ) cell of this table, and letni+,
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Figure 14. Spatial association for the tolerance model after 20, 100, and 500 iterations.
The left figure shows the landscape (coded as in Fig. 12); the right figure shows the spatial
association indexτ as a function of distance, for a random sample of 1000 pairs of cells.
The horizontal dotted line is the critical value ofτ that is just significantly different from
zero at the .05 level. Parameter values:pd = pc = 0.01,d1 = d2 = 4.

n+ j , andn denote the row sums, column sums, and overall total, respectively. Letr
andc denote the number of rows and columns in the table (r = c = 4 in our case).
Then the spatial association coefficientτ(δ) was estimated as:

τ̂ (δ) =
n
∑c

j=1

∑r
i=1

n2
i j

n+ j
−∑r

i=1 n2
i+

n2−∑r
i=1 n2

i+
. (10)

Under the null hypothesisτ(δ) = 0, the statistic,

U2 = (n− 1)(r − 1)τ̂ (δ), (11)
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Figure 15. The correlation length (in cells) as a function of time for the simulations shown
in Figs 12–14. Correlation length is defined as the distance at which the spatial association
τ drops below 0.01 for the first time.

has aχ2 distribution with(r − 1)(c− 1) degrees of freedom (Light and Margolin,
1971).

Whenτ(δ) = 1, the state at one location completely determines the state at a
distanceδ. If the two states are statistically independent,τ(δ) = 0. Between
these two extremes,τ measures the information that the state of one patch provides
about the state of another. Light and Margolin (1971) showed thatτ is the discrete
equivalent of the coefficient of determinationR2; it measures the proportion of the
variance in the state of a distant patch explained by the state of the local patch. Thus,
τ(δ) is equivalent to the square of a spatial autocorrelation, or the complement of
the semivariance.

Figures 12–14 show the creation and eventual decay of spatial pattern, starting
from an initial condition of a few patches containingS1 or S2 scattered at random
in an empty landscape. Initially, all three models generate patchiness as the initial
populations spread over the landscape. Eventually, however, the pattern decays to
a random arrangement, with a correlation length of zero. Knowledge of the state
of a patch provides no information on the state of an adjacent patch.

The three competition models differ in the rate of decay of the transient spa-
tial pattern (Fig. 15). Pattern decay occurs most rapidly in the facilitation model,
more slowly in the tolerance model, and extremely slowly in the inhibition model,
because the latter model produces patches occupied by one or the other species.
These patches can be invaded only along the boundary between two different
species.
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The transient patchiness shown here may be as important as possible permanent
patchiness. A landscape colonized, after a large-scale disturbance, by species that
follow the inhibition model is likely to display large-scale patchiness for a very long
time.

5. DISCUSSION

The mean-field PO competition models provide a good approximation to the
corresponding spatially explicit CA model.

In particular:

(a) Equilibrium species frequencies at the landscape level are predicted very
closely by the PO model; except when either dispersal or disturbance rates
are low and persistence of the species is difficult.

(b) In both the PO and CA models, coexistence can be mediated by disturbance.
Landscape-level diversity is maximized at intermediate disturbance levels.
These results do not require that the inferior competitor has an advantage in
dispersal (Figs 5–7), provided thatpd is high enough andpc is small enough;
i.e., as long as disturbance is sufficiently rapid compared to the time scale of
transientwithin-patchcoexistence.

Of course, a dispersal advantage obviously helps, since the equilibrium
frequency of the losing competitor is an increasing function of its dispersal
coefficient. Nor is this to say that trade-offs between competitive ability and
dispersal do not exist. Such trade-offs influence the potential for extinction
resulting from habitat loss (Nee and May, 1992; Tilman and Kareiva, 1997).

(c) There is no consistent difference between the PO and CA models in the
conditions required for coexistence. If dispersal coefficients are too low,
the species is driven extinct by the disturbance process. If both dispersal
coefficients are high enough, both species coexist. There are regions of the
parameter space in which each species may persist alone, if its competitor’s
dispersal coefficient is too low. The critical dispersal coefficients are similar
in the two types of models.

(d) Because of the finite speed of dispersal in the CA model, the approach to
equilibrium is slower than in the PO model.

Spatially explicit models admit the possibility of spatial pattern formation, but
none of the models examined here produced persistent spatial pattern. The spatial
correlation length decays to zero as time increases. The three models differ in the
rate of decay of transient spatial pattern. The inhibition model yields very long-
lasting transient patchiness, because regions occupied by one species can be invaded
by the other only across their mutual boundary.

Transient does not imply trivial. A landscape colonized by inhibition competitors
following a large-scale disturbance is likely to exhibit patchy distributions for a
long time. This is particularly likely to be true of species that exhibit interference
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competition for space, in which the priority effects that give rise to the inhibition
model are likely to occur.

Other comparisons of implicitly and explicitly spatial models have produced dif-
ferent results. Durrett and Levin (1994a, b) compared the equilibrium frequencies
of spatial and nonspatial models for hawk–dove interactions with different pay-
off matrices. They found that qualitative differences between explicitly (reaction–
diffusion and interacting particle systems) and implicitly (ordinary differential equa-
tion and patch occupancy) spatial models depended on the nature of the pay-off
matrix of the the interaction. All models produced similar results for mutualistic
pay-off matrices. For competitive interactions, spatial and nonspatial models did
not agree. The outcome was dependent on the initial conditions for the nonspatial
models, but not for the spatially explicit versions. When hawks always reproduced
faster than doves, but pure hawks died out, there was no difference between the
spatial and nonspatial models, however, the deterministic (reaction–diffusion and
ordinary differential equations) and stochastic (patch occupancy and interacting
particle systems) versions differed.

Dytham (1994) compared a spatially explicit CA model of competition to the non-
spatial version of Nee and May (1992). These models are similar to our tolerance
models, but with instantaneous exclusion ofS2 by S1 when they simultaneously
colonize a patch. Dytham found that the outcome of competition, as habitable area
declines, differed between the spatial and nonspatial formulations. In particular,
the persistence of the superior competitor with inferior dispersal was less sensitive
to habitat loss in the spatially explicit version. However, Moilanen and Hanski
(1995) have shown that a more biologically realistic spatial version of Nee and
May’s (1992) model produces results that do not differ greatly from the nonspatial
results.

Thus far, the limited number of direct comparisons between spatial and nonspa-
tial competition models make it difficult to draw any general conclusions. It seems
that the effect of explicit spatial structure depends on the nature of the interac-
tion.

In general, explicitly spatial models are expected to differ from implicitly spatial
models because of: (i) the formation of spatial pattern, which changes the local
interactions; and (ii) increased temporal and spatial variance due to local inter-
actions. These two reasons are not independent; spatial pattern increases spatial
variance in neighborhood frequencies. We have found that interspecific competi-
tion does not generate spatial pattern. We have also found, in results not shown
here, that the temporal variance in species frequencies in these models is no greater
than what would be expected on the basis of random sampling of 65 536 patches
from the spatially implicit PO model. Thus, neither of the two conditions that
would lead to a difference between the PO and CA models are satisfied for these
models.

This suggests that two-species competition models, regardless of the mechanism,
may be too simple to produce interesting spatial phenomena. In a review of spatial
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models (not cellular automata), Kareiva (1990) notes that two-species competition
models cannot produce diffusive instabilities. Models of predator–prey interactions
are known to be more prone to produce spatial patterns. We suppose that more
complicated food web models might also do so. Intransitive competitive networks
involving three or more species have, in PO models, effects on diversity similar to
predator–prey interactions (Caswell and Cohen, 1991b). The CA version of such
models would be interesting to examine, because they might produce enough spatial
heterogeneity to differ from their spatially implicit counterparts.

Spatial pattern can, of course, be created by environmental heterogeneity. Large-
scale disturbance, for example, that produces large continguous blocks of empty
patches, can produce spatial autocorrelation on the scale of the disturbance size.
Spatial pattern may also be more common, or more long-lasting, when parameters
are close to their critical values for persistence.

Finally, we note that there is an important distinction between ecological CA in
which cells represent individual organisms [e.g., Inghe (1989), Iwasaet al.(1991),
Wilson et al. (1993)] and those, such as the present paper and Schwinning and
Parsons (1996), in which cells represent spatial patches that may be occupied by
populations of one or more species. Individual and patch CA models obviously
differ in the scales on which they describe biological processes, but they also differ
in the ways in which biological processes relate to the CA framework. In individual
CA models, the influence of a cell on its neighbors represents the processes of
individual movement or growth, or ecological interactions such as competition or
predation between adjacent individuals. In patch CA, cells influence each other
through the processes of dispersal and colonization, but interspecific interactions
take place within a cell.
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